SPRINT Home UMBER Home Contents Standard Search Advanced Search Relation Search

==SPRINT==> PRINTS View



  selected as


PR01399

Identifier
ENTSNTHTASED  [View Relations]  [View Alignment]  
Accession
PR01399
No. of Motifs
3
Creation Date
15-SEP-2000
Title
Enterobactin synthetase component D signature 
Database References
Literature References
1. PAYNE, S.M.
Detection, isolation, and characterisation of siderophores.
METHODS ENZYMOL. 235 329-344 (1994).
 
2. NAHLIK, M.S., BRICKMAN, T.J., OZENBERGER, B.A. AND MCINTOSH, M.A.
Nucleotide sequence and transcriptional organisation of the Escherichia 
coli enterobactin biosynthesis cistrons entB and entA.
J.BACTERIOL. 171 784-790 (1989).
 
3. WYCKOFF, E.E., STOEBNER, J.A., REED, K.E. AND PAYNE, S.M. 
Cloning of a Vibrio cholera vibriobactin gene cluster: identification of
genes required for early steps in siderophore synthesis.
J.BACTERIOL. 179 7055-7062 (1997).
 
4. LIU, J., DUNCAN, K. AND WALSH, C.T.
Nucleotide sequence of a cluster of Escherichia coli enterobactin 
biosynthesis genes: identification of entA and purification of its product
2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase.
J.BACTERIOL. 171 791-798 (1989).

Documentation
Iron is essential for growth in both bacteria and mammals. Controlling the
amount of free iron in solution is often used as a tactic by hosts to limit
invasion of pathogenic microbes; binding iron tightly within protein
molecules can accomplish this. Such iron-protein complexes include haem in
blood, lactoferrin in tears/saliva and transferrin in blood plasma. Some
bacteria express surface receptors to capture eukaryotic iron-binding
compounds, while others have evolved siderophores to scavenge iron from
iron-binding host proteins [1].
 
The absence of free iron molecules in the surrounding environment triggers 
transcription of gene clusters that encode both siderophore-synthesis 
enzymes, and receptors that recognise iron-bound siderophores [2]. Classic
examples are the enterobactin/enterochelin clusters found in Escherichia
coli and Salmonella spp., although similar moieties in other pathogens have 
been identified. The enzymic machinery that produces vibrionectin in Vibrio
cholera is such a homologue [3].
 
EntD forms part of the enterobactin-synthetase enzyme complex. It is 
involved in the final stage of enterobactin biosynthesis, converting
2,3-dihydroxybenzoic acid (DHBA) and L-serine to enterobactin. Deletion
studies involving EntD- mutants have shown that it is essential for
virulence [4].
 
ENTSNTHTASED is a 3-element fingerprint that provides a signature for  
enterobactin synthetase component D proteins. The fingerprint was derived
from an initial alignment of 3 sequences: the motifs were drawn from 
conserved regions spanning the full alignment length (~160 amino acids). 
Two iterations on SPTR37_10f were required to reach convergence, at 
which point a true set comprising 10 sequences was identified.
Summary Information
10 codes involving  3 elements
0 codes involving 2 elements
Composite Feature Index
3101010
2000
123
True Positives
ENTD_ECOLI    ENTD_SALTY    O24813        O33336        
O88029 P72385 Q53636 Q54153
Q9Z5I5 Q9ZGA8
Sequence Titles
ENTD_ECOLI  ENTEROBACTIN SYNTHETASE COMPONENT D (ENTEROCHELIN SYNTHASE D) - ESCHERICHIA COLI. 
ENTD_SALTY ENTEROBACTIN SYNTHETASE COMPONENT D (ENTEROCHELIN SYNTHASE D) - SALMONELLA TYPHIMURIUM.
O24813 DNA FOR L-PROLINE 3-HYDROXYLASE, COMPLETE CDS - STREPTOMYCES SP.
O33336 HYPOTHETICAL 24.7 KD PROTEIN - MYCOBACTERIUM TUBERCULOSIS.
O88029 HYPOTHETICAL 24.5 KD PROTEIN - STREPTOMYCES COELICOLOR.
P72385 NSH-ORFC - STREPTOMYCES ACTUOSUS.
Q53636 ENTD - SALMONELLA AUSTIN.
Q54153 ENTD - SHIGELLA FLEXNERI.
Q9Z5I5 PUTATIVE IRON-CHELATING COMPLEX SUBUNIT - MYCOBACTERIUM LEPRAE.
Q9ZGA8 LANZ6 - STREPTOMYCES CYANOGENUS.
Scan History
SPTR37_10f 2  25   NSINGLE    
Initial Motifs
Motif 1  width=21
Element Seqn Id St Int Rpt
AKRRNEFITARYCARIALGRL Q9Z5I5 46 46 -
RKRKAEHLAGRIAAVHALRRW ENTD_SALTY 44 44 -
RKRKTEHLAGRIAAVYALREY ENTD_ECOLI 47 47 -

Motif 2 width=19
Element Seqn Id St Int Rpt
GDKGEPCWPDGVVGSLTHC Q9Z5I5 76 9 -
GDKRQPLWPDGLFGSISHC ENTD_SALTY 72 7 -
GELRQPVWPAEVYGSISHC ENTD_ECOLI 76 8 -

Motif 3 width=17
Element Seqn Id St Int Rpt
ILFCAKEATYKAWFPLT Q9Z5I5 151 56 -
LAFSAKESVYKAFQTAS ENTD_SALTY 144 53 -
LAFSAKESAFKASEIQT ENTD_ECOLI 149 54 -
Final Motifs
Motif 1  width=21
Element Seqn Id St Int Rpt
AKRRNEFITARYCARIALGRL Q9Z5I5 46 46 -
AKRRNEFITVRHCARIALDQL O33336 46 46 -
RKRKAEHLAGRIAAVHALRRW ENTD_SALTY 44 44 -
AKRRREFTVVRSCARRAMEKL O88029 39 39 -
RKRKAEHLAGRIAAVHALRRW Q53636 44 44 -
PRRVNEFGTVRECARRSLVRL Q9ZGA8 58 58 -
EKRRRDFAGVRVCARRALRTL P72385 59 59 -
PRRRREFSTVRRCARAALGEL O24813 27 27 -
RKRKTEHLAGRIAAVYALREY ENTD_ECOLI 47 47 -
RKRKAEDLAGRIAAIYALREY Q54153 47 47 -

Motif 2 width=19
Element Seqn Id St Int Rpt
GDKGEPCWPDGVVGSLTHC Q9Z5I5 76 9 -
GDKGEPCWPDGMVGSLTHC O33336 76 9 -
GDKRQPLWPDGLFGSISHC ENTD_SALTY 72 7 -
GERGAPRWPEGIAGSMTHC O88029 69 9 -
GDKRQPLWPDDLFGSISHC Q53636 72 7 -
GTRGEPRWPPGIVGSMTHC Q9ZGA8 88 9 -
GPRGEPRWPDGVVGSLTHC P72385 89 9 -
GRHRAPQWPTGVVGSMTHC O24813 57 9 -
GELRQPVWPAEVYGSISHC ENTD_ECOLI 76 8 -
GELRQPVWPAEVYGSISHC Q54153 76 8 -

Motif 3 width=17
Element Seqn Id St Int Rpt
ILFCAKEATYKAWFPLT Q9Z5I5 151 56 -
ILFCAKEATYKAWFPLT O33336 151 56 -
LAFSAKESVYKAFQTAS ENTD_SALTY 144 53 -
LLFSAKESVYKAWYPLT O88029 146 58 -
LAFSAKESVYKAFQTAS Q53636 144 53 -
LTFSAKEAVYKAWFPLA Q9ZGA8 164 57 -
LLFCVKEAVFKAWYPAA P72385 167 59 -
LLFSCKEAVYKVWFPLA O24813 134 58 -
LAFSAKESAFKASEIQT ENTD_ECOLI 149 54 -
LAFSAKESAFKASEIQT Q54153 149 54 -